Quantities like E, F, Φ and H are extensive $=$ have the property of additivity. From this ane may conclude how they depend on the number of particles.

An extensive thermoclyramic function a homogeneous function of 1 -st oder writ extensive macroscopic parameters.

For example, we wrote $E=E(S, V)$ Introducing the number of particles N,

$$
E=N f\left(\frac{S}{N}, \frac{v}{N}\right)
$$

Similarly,

$$
\begin{aligned}
& F=N f\left(\frac{V}{N}, T\right) \\
& Q=N f(P, T) \\
& H=N f\left(\frac{s}{N}, P\right)
\end{aligned}
$$

Consider N as a variable

$$
d E=T d S-P d V+\mu d N
$$

inhere $\mu=\left(\frac{\partial E}{\partial N}\right)_{S, V}$-chemical plential

Similarly,

$$
\begin{aligned}
& d F=-S d T-P d V+\mu d N \\
& d P=-S d T+V d P+\mu d N \\
& d H=T d S+V d P+\mu d N \\
& \mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}=\left(\frac{\partial P}{\partial N}\right)_{T, P}=\left(\frac{\partial H}{\partial N}\right)_{S, P}
\end{aligned}
$$

\rightarrow Chemical potential may be obtained from any of these thermodynamic functions
Then from the form $\Phi=N f(P, T)$ and $\mu=\left(\frac{\partial \Phi}{\partial N}\right)_{P, T}$ it tolloms that

$$
Q=\mu N
$$

It implies also that when considered as a function of P and T, the chemical potential is independent of N.

From the formula above,

$$
\begin{gathered}
-S d T+V d P+\mu d N \equiv d P=d \mu N+\mu d N \\
\rightarrow d \mu N=-S d T+V d P \\
d \mu=-S d T+v d P
\end{gathered}
$$

S and V - entropy and volume per molecule
S and V - entropy and vourne $1-$
Consider a volume in space which may exchange particles with the environment.
In that case,

$$
d F=-S d T+\mu d N
$$

Let us define some thermodynamic potential which uses variable μ in place of N

$$
d(F-\mu N)=-S d T-N d \mu
$$

-that will do , $F-\mu N$
However, $\mu N=\Phi$. Then $F-\mu N=F-Q=-P V$

$$
\Omega=-P V
$$

The differential

$$
\begin{aligned}
& d \Omega=-S d T-N d \mu \\
& \Omega=\Omega(T, \mu)
\end{aligned}
$$

Let's assume a body is in equilibrium

This body may be inhomogeneous, e.g., due to an external field
Maximise the total entropy

$$
\partial S-\partial S_{1}+\partial S \partial N_{2}-\partial \underline{S_{1}}-\frac{\partial S_{2}}{}=0
$$

$$
\frac{\partial S}{\partial N_{1}}=\frac{\partial S_{1}}{\partial N_{1}}+\frac{\partial S}{\partial N_{2}} \frac{\partial N_{2}}{\partial N_{1}}=\frac{\partial S_{1}}{\partial N_{1}}-\frac{\partial S_{2}}{\partial N_{2}}=0
$$

Use that $d E=T d S+\mu d N \rightarrow d S=\frac{d E}{T}-\frac{\mu}{T} d N$
Thus, $\frac{\mu_{1}}{T_{1}}=\frac{\mu_{2}}{T_{2}}$
In equilibrium $T_{1}=T_{2}$
Thus, $\mu=$ canst in the system
Gibbs distribution for a variable number of particles
Subsystem $=$ system in a closed volume N - number of particles within this volume $\omega_{n N}$ - prob-ty it have N particles and be in the n-th state

$$
w_{n N} \propto e^{S_{\text {cur }}}\left(E_{0}-E_{n N}, N_{0}-N\right)
$$

Expand in both $E_{n N}$ and N is lit order we'll use that $T d S=d E+P d V-\mu d N$

$$
\rightarrow d S=\frac{d E}{T}+\frac{P}{T} d V-\frac{\mu}{T} d N
$$

$$
\begin{aligned}
& \rightarrow d S=\frac{d E}{T}+\frac{P}{T} d V-\frac{\mu}{T} d N \\
& \rightarrow\left(\frac{\partial S}{\partial E}\right)_{V, N}=\frac{1}{T} ;\left(\frac{\partial S}{\partial N}\right)_{E, V}=-\frac{\mu}{T} \\
& \text { Thus, } S_{\text {end }}\left(E_{0}-E_{n N}, N_{0}-N\right) \approx S_{e n v}\left(E_{0}, N_{0}\right)-\frac{E_{n N}}{T}+\frac{\mu N}{T}
\end{aligned}
$$

From here,

$$
w_{n N} \propto e^{\frac{\mu N-E_{n N}}{T}}
$$

We will use $S=-\left\langle\ln \omega_{n N}\right\rangle=$

$$
\begin{aligned}
& =\frac{E}{T}-\frac{\mu \bar{N}}{T}+\ln \tilde{Z}=S \\
& \rightarrow-\ln \tilde{Z}=\frac{1}{T}(E-\mu \bar{N}-T S)=\frac{\Omega}{T} \\
& w_{n N}=e^{\frac{\Omega-E_{n N}}{T}}
\end{aligned}
$$

